ELETRODINÃMICA GRACELI QUÂNTICA RELATIVISTA .[EDQRG]

 [EDQRG] =  E + spin +  + [] +]+  + . / [M/c].

M/c = massa / por velocidade da luz.




Composição:Partícula elementar
Grupo:Bóson de calibre
Interação:Eletromagnetismo
Símbolo(s):γ, hν, ou ħω
Teorizada:Albert Einstein
Massa:0
<1×10−18 [[eV/c2]][1]
Carga elétrica:0
<1×10−35 e[1]
Spin:1
γ, hν, ou ħω





Fotão
Light Amplification by Stimulated Emission of Radiation.jpg
Fótons emitidos em um feixe coerente de um laser
Composição:Partícula elementar
Grupo:Bóson de calibre
Interação:Eletromagnetismo
Símbolo(s):γ, hν, ou ħω
Teorizada:Albert Einstein
Massa:0
<1×10−18 [[eV/c2]][1]
Carga elétrica:0
<1×10−35 e[1]
Spin:1

fotão (português europeu) ou fóton (português brasileiro) é a partícula elementar mediadora da força eletromagnética. O fóton também é o quantum da radiação eletromagnética (incluindo a luz). A palavra photon foi criada por Gilbert Lewis em 1926.[2] Fótons são bósons e possuem Spin igual a um. A troca de fótons (virtuais1) entre as partículas como os elétrons e os prótons é descrita pela eletrodinâmica quântica, a qual é a parte mais antiga do Modelo Padrão da física de partículas. Ele interage com os elétrons e núcleo atômico sendo responsável por muitas das propriedades da matéria, tais como a existência e estabilidades dos átomosmoléculas, e sólidos.

Em alguns aspectos um fóton atua como uma partícula, sendo que a explicação satisfatória para esse efeito foi dada em 1905, por Albert Einstein pelo Efeito fotoelétrico. Em outras ocasiões, um fóton se comporta como uma onda, tal como quando passa através de uma lente ótica. De acordo com a conhecida dualidade partícula-onda da mecânica quântica, é natural para um fóton apresentar ambos aspectos na sua natureza, de acordo com as circunstâncias que se encontra. Normalmente, a luz é formada por um grande número de fótons, tendo a sua intensidade ou brilho ligada ao número deles. Para baixas intensidades, são necessários equipamentos muito sensíveis, como os usados em astronomia, para detectar fótons individuais.

Símbolo

Um fóton é usualmente representado pelo símbolo  (gama), embora em física de altas energias este símbolo se refira a fótons de energias extremamente altas (um raio gama).

Propriedades

Os fótons são comumente associados com a luz visível, o que só é verdade para uma parte muito limitada do espectro eletromagnético. Toda a radiação eletromagnética é quantizada em fótons: isto é, a menor porção de radiação eletromagnética que pode existir é um fóton, qualquer que seja seu comprimento de ondafrequênciaenergia ou momento. Fótons são partículas fundamentais que podem ser criados e destruídos quando interagem com outras partículas, mas é conhecido que decaiam por conta própria.[carece de fontes]

Diferente da maioria das partículas, fótons não tem uma massa intrínseca detectável, ou "massa restante" (que se opõem a massa relativística). Fótons estão sempre se movendo à velocidade da luz (a qual varia de acordo com o meio no qual ela viaja) em relação a todos os observadores. A despeito da sua ausência de massa, fótons têm um momento proporcional a sua frequência (ou inversamente proporcional ao seu comprimento de onda), e seu momento pode ser transferido quando um fóton colide com a matéria (como uma bola de bilhar em movimento transfere seu momento para outra bola). Isto é conhecido como pressão de radiação a qual deve ser algum dia usada como propulsão como um veleiro solar.

Fótons são desviados por um campo gravitacional duas vezes mais que as predições da mecânica Newtoniana predisse para uma massa viajando a velocidade da luz com o mesmo momento de um fóton. Esta observação é comumente citada como uma evidência que daria suporte a relatividade geral, uma teoria da gravidade de muito sucesso publicada em 1915 por Albert Einstein. Na relatividade geral, os fótons sempre viajam a velocidade da luz em uma linha "reta", depois de se levar em conta a curvatura do espaço-tempo. (Em um espaço curvo, isto é chamado de geodésica).

Criação

Fótons são produzidos por átomos quando um elétron de valência move-se de um orbital para outro orbital com (menos ou mais) energia negativa. Fótons também podem ser emitidos por um núcleo instável quando este decai por algum tipo de decaimento nuclear. Além disto, fótons são produzidos sempre que partículas carregadas são aceleradas.

Átomos continuamente emitem fótons devido suas colisões mútuas. A distribuição do comprimento de onda destes fótons portanto está relacionada a sua temperatura absoluta (usualmente em Kelvin). A distribuição de Maxwell-Boltzmann prevê a possibilidade de um fóton possuir um determinado comprimento de onda ao ser emitido por uma coleção de átomos a uma dada temperatura. O espectro de tais fótons normalmente se encontra entre a faixa da micro-onda e do infravermelho, mas objetos aquecidos irão emitir luz visível também.

Rádiotelevisãoradar e outros tipos de transmissores usados para telecomunicação e monitoramento remoto rotineiramente criam uma extensa variedade de fótons de baixa-energia pela oscilação de campos elétricos em condutoresMagnetrons emitem fótons coerente usado em fornos micro-ondaTubos Klystron são usados quando as emissões de micro-onda devem ser mais precisamente controladas. Masers e laser criam fótons monocromáticos por emissão estimulada. Fótons mais energéticos podem ser criados por decaimento nuclearaniquilação partícula-antipartícula, e colisão de partículas de alta energia.

Spin

Os fótons tem spin 1 e são, portanto, classificados como bósons. Os fótons são os mediadores dos campos eletromagnéticos. Por isto, eles são as partículas que possibilitam que outras partículas interajam com outras partículas eletromagnéticas e com campos eletromagnéticos, por isto eles são também conhecidos como bóson de calibre. Em geral, um bóson com spin 1 deveria possuir três projeções de spin distintas (-1, 0 e 1). Contudo, a projeção zero requer um referencial aonde o fóton esteja em repouso. Devido a sua massa de repouso ser zero, tal referencial não existe, de acordo com a teoria da relatividade. Então os fótons no vácuo sempre viajam a velocidade da luz, e mostram somente duas projeções de spin, correspondendo as duas polarizações circulares opostas. Por causa de sua massa intrínseca zero, fótons são consequentemente sempre polarizados transversalmente, da mesma forma que as ondas eletromagnéticas o são, no espaço vazio.

Estado quântico

luz visível do Sol, ou de uma lâmpada, é comumente uma mistura de muitos fótons de diferentes comprimentos de onda. Uma visão deste espectro de frequência, pode ser obtida por exemplo pela passagem da luz por um prisma. Neste co-denominado "estado misto", que estas fontes tendem a produzir, a luz se constitui de fótons em equilíbrio térmico (também denominado de radiação de corpo negro). Onde eles são de muita forma, semelhantes às partículas de um gás. Por exemplo, eles exercem pressão, conhecida como pressão de radiação, na qual (em parte) origina a aparência dos cometas quando eles estão viajando próximos ao Sol.

Por outro lado, um arranjo de fótons também pode existir em estados muito mais bem organizados. Por exemplo, nos denominados estados coerentes, descreve-se uma luz coerente como as emitidas por um laser ideal. O alto grau de precisão obtido com instrumentos a laser advém desta organização.

Absorção molecular

Uma molécula típica, , possui vários níveis de energia diferentes. Quando uma molécula absorve um fóton, sua energia aumenta em uma quantidade igual à da energia do fóton. A molécula então entra em um estado excitado.

Fótons no vácuo

No espaço vazio, conhecido como vácuo perfeito, todos os fótons se movem a velocidade da luzc, determinada como sendo igual a 299 792 458 metros por segundo, ou aproximadamente 3×108 m s−1. O metro é definido como a distância percorrida pela luz no vácuo em 1/299 792 458 de um segundo, como a velocidade da luz não oferece qualquer incerteza experimental, diferente do metro ou do segundo, tanto que confiamos no segundo sendo definido por meio de um relógio muito preciso.

Segundo um princípio da relatividade restrita de Einstein, todas as observações da velocidade da luz no vácuo são as mesmas para todas as direções e para qualquer observador em um referencial inercial. Este princípio é geralmente aceito na física desde que muitas consequências práticas para as partículas de alta-energia tem sido observadas.

Fótons na matéria

Quando fótons passam através de material, tal como num prisma, frequências diferentes são transmitidas em velocidades diferentes. Isto é chamado de refração e resulta na dispersão das cores, onde fótons de diferentes frequências saem em diferentes ângulos. Um fenômeno similar ocorre na reflexão onde superfícies podem refletir fótons de várias frequências em diferentes ângulos.

relação de dispersão associada para fótons é uma relação entre a frequênciaf, e comprimento de onda, λ. ou, equivalentemente, entre sua energiaE, e momentop. Isto é simples no vácuo, desde que a velocidade da onda, v, é dada por

As relações quânticas do fóton são:

 e 

Onde h é constante de Planck. Então nós podemos escrever esta relação como:

que é característica de uma partícula de massa zero. Desta forma vemos como a notável constante de Planck relaciona os aspectos de onda e partícula.

Em um material, um par de fótons para a excitação do meio e comportamento diferente. Estas excitações podem ser frequentemente descritas como quase-partículas (tais como fónos e excitons); isto é, como onda quantizadas ou entidades quase-partículas propagando-se através da matéria. O "Acoplamento" significa que os fótons podem transformar nesta excitação (isto é, o fóton são absorvidos e o meio excitado, envolvendo a criação das quase-partículas) e vice-versa (as quase-partículas transformam-se de volta em um fóton, ou o meio relaxa pela re-emissão de energia na forma de fótons). Contudo , como estas transformações são as únicas possíveis, eles não estão ligados para acontecer e o que realmente propaga-se através do meio é uma polarização; isto é, uma superposição quântica-mecânica da energia quântica iniciada em um fóton e de uma excitação de uma quase partícula material.

De acordo com as regras da mecânica quântica, uma medição (aqui: na observação é que acontece a polarização) quebra a superposição; isto é, o quantum é absorvido pelo meio e permanece lá (como acontece em um meio opaco) ou re-emerge como um fóton da superfície para o espaço (como acontece em um meio transparente).

Excitações no material tem uma dispersão não-linear; isto é; seu momento não é proporcional a sua energia. Portanto, estas partículas se propagam mais devagar do que a velocidade da luz no vácuo. (A velocidade de propagação é a derivada da relação dispersão com seu respectivo momento.) Esta é a razão formal porque a luz é mais lenta em um meio (tal como o vidro) do que no vácuo. (A razão da difração pode ser deduzida disto pelo princípio de Huygens.) Outro meio de explicar isto é dizer que o fóton, por começar a se misturar com o meio excitado para forma a polarização, adquire um efeito de massa, o que significa que ele não pode viajar a c, a velocidade da luz no vácuo.

Os quanta (plural de quantum) virtuais são partículas hipotéticas trocadas entre partículas carregadas. Se são partículas verdadeiras ou não é um assunto sujeito a uma certa controvérsia. Supõe-se que efeitos como o efeito Casimir sejam provas evidentes da existência de fotões virtuais, embora essa hipótese não seja totalmente aceita.[carece de fontes]





radiação eletromagnética é uma oscilação em fase dos campos elétricos e magnéticos, que, autossustentando-se, encontram-se desacoplados das cargas elétricas que lhe deram origem. As oscilações dos campos magnéticos e elétricos são perpendiculares entre si e podem ser entendidas como a propagação de uma onda transversal, cujas oscilações são perpendiculares à direção do movimento da onda (como as ondas da superfície de uma lâmina de água), que pode se deslocar através do vácuo. Dentro do ponto de vista da Mecânica Quântica, podem ser entendidas, ainda, como o deslocamento de pequenas partículas, os fótons.

O espectro visível, ou simplesmente luz visível, é apenas uma pequena parte de todo o espectro da radiação eletromagnética possível, que vai desde as ondas de rádio aos raios gama. A existência de ondas eletromagnéticas foi prevista por James Clerk Maxwell e confirmada experimentalmente por Heinrich Hertz. A radiação eletromagnética encontra aplicações como a radiotransmissão, seu emprego no aquecimento de alimentos (fornos de micro-ondas), em lasers para corte de materiais ou mesmo na simples lâmpada incandescente.

A radiação eletromagnética pode ser classificada de acordo com a frequência da onda, em ordem crescente, nas seguintes faixas: ondas de rádiomicro-ondasradiação terahertzradiação infravermelhaluz visívelradiação ultravioletaraios X e radiação gama.

No que tange às fontes de radiação, houve muitas controvérsias sobre se uma carga acelerada poderia irradiar ou não. Em parte por causa do princípio da equivalência e a nulidade da reação de radiação observada nos cálculos quando a fonte é submetida à aceleração uniforme.[1][2][3]

Ondas eletromagnéticas

Representação esquemática de uma onda eletromagnética linearmente polarizada produzida por um dipolo elétrico oscilante (à esquerda). A onda se propaga ao longo do eixo horizontal com comprimento de onda λ (ao centro). O campo elétrico, o campo magnético e o vetor de onda são representados, respectivamente, em azul, vermelho e preto (à direita).

As ondas eletromagnéticas primeiramente foram previstas teoricamente por James Clerk Maxwell e depois confirmadas experimentalmente por Heinrich Hertz. Maxwell notou as ondas a partir de equações de electricidade e magnetismo, revelando sua natureza e sua simetria. Faraday mostrou que um campo magnético variável no tempo gera um campo eléctrico. Maxwell mostrou que um campo eléctrico variável com o tempo gera um campo magnético, com isso há uma autossustentação entre os campos eléctrico e magnético. Em seu trabalho de 1862, Maxwell escreveu:

"A velocidade das ondas transversais em nosso meio hipotético, calculada a partir dos experimentos electromagnéticos dos Srs. Kohrausch e Weber, concorda tão exactamente com a velocidade da luz, calculada pelos experimentos óticos do Sr. Fizeau, que é difícil evitar a inferência de que a luz consiste nas ondulações transversais do mesmo meio que é a causa dos fenômenos eléctricos e magnéticos."[carece de fontes]

Ondas harmônicas

Uma onda harmônica é uma onda com a forma de uma função senoidal, como na figura, no caso de uma onda que se desloca no sentido positivo do eixo dos .

A distância  entre dois pontos consecutivos onde o campo e a sua derivada têm o mesmo valor, é designada por comprimento de onda (por exemplo, a distância entre dois máximos ou mínimos consecutivos). O valor máximo do módulo do campo, , é a sua amplitude.

Onda Harmônica

O tempo que a onda demora a percorrer um comprimento de onda designa-se por {período}, .

O inverso do período é a frequência , que indica o número de comprimentos de onda que passam por um ponto, por unidade de tempo. No sistema SI a unidade da frequência é o hertz, representado pelo símbolo Hz, equivalente a .

No caso de uma onda eletromagnética no vácuo, a velocidade de propagação é  que deverá verificar a relação:

A equação da função representada na figura acima é:

onde a constante  é a fase inicial. Essa função representa a forma da onda num instante inicial, que podemos admitir .

Para obter a função de onda num instante diferente, teremos que substituir  por , já que a onda se propaga no sentido positivo do eixo dos , com velocidade .

usando a relação entre a velocidade e o período, podemos escrever:

Se substituirmos , obteremos a equação que descreve o campo elétrico na origem, em função do tempo:

assim, o campo na origem é uma função sinusoidal com período  e amplitude . O campo em outros pontos tem exatamente a mesma forma sinusoidal, mas com diferentes valores da fase.[4]

Propriedades

Os campos eléctrico e magnético obedecem aos princípios da superposição de ondas, de modo que seus vectores se cruzam e criam os fenômenos da refracção e da difração.[carece de fontes] Uma onda eletromagnética pode interagir com a matéria e, em particular, perturbar átomos e moléculas que as absorvem, podendo os mesmos emitir ondas em outra parte do espectro.

Como qualquer fenômeno ondulatório, as ondas eletromagnéticas podem interferir entre si. Sendo a luz uma oscilação, ela não é afetada pela estática eléctrica ou por campos magnéticos de uma outra onda eletromagnética no vácuo. Em um meio não linear, como um cristal, por exemplo, interferências podem acontecer e causar o efeito Faraday, em que a onda pode ser dividida em duas partes com velocidades diferentes.[carece de fontes]

Na refracção, uma onda, transitando de um meio para outro de densidade diferente, tem alteradas sua velocidade e sua direcção (caso esta não seja perpendicular à superfície) ao entrar no novo meio. A relação entre os índices de refracção dos dois meios determina a escala de refração medida pela lei de Snell:

Nesta equação, i é o ângulo de incidência, N1 é o índice de refração do meio 1, r é o ângulo de refração, e N2 é o índice de refração do meio 2.

A luz se dispersa em um espectro visível porque é reflectida por um prisma, devido ao fenômeno da refração. As características das ondas eletromagnéticas demonstram as propriedades de partículas e da onda ao mesmo tempo, e se destacam mais quando a onda é mais prolongada.

Modelo de onda eletromagnética

Um importante aspecto da natureza da luz é a frequência uma onda, sua taxa de oscilação. É medida em hertz, a unidade SIU de frequência, na qual um hertz (1,00 Hz) é igual a uma oscilação por segundo. A luz normalmente tem um espectro de frequências que, somadas, juntos formam a onda resultante. Diferentes frequências formam diferentes ângulos de refração. Uma onda consiste nos sucessivos baixos e altos, e a distância entre dois pontos altos ou baixos é chamado de comprimento de onda. Ondas eletromagnéticas variam de acordo com o tamanho, de ondas de tamanhos de prédios a ondas gama pequenas menores que um núcleo atômico. A frequência é inversamente proporcional ao comprimento da onda, de acordo com a equação:

.

Nesta equação, v é a velocidade, λ (lambda) é o comprimento de onda, e f é a frequência da onda.

Na passagem de um meio material para outro, a velocidade da onda muda, mas a frequência permanece constante. A interferência acontece quando duas ou mais ondas resultam em um novo padrão de onda. Se os campos tiverem as componentes nas mesmas direções, uma onda "coopera" com a outra (interferência construtiva); entretanto, se estiverem em posições opostas, pode haver uma interferência destrutiva.

Modelo de partículas

Um feixe luminoso é composto por pacotes discretos de energia, caracterizados por consistirem em partículas denominadas fotões (português europeu) ou fótons (português brasileiro). A frequência da onda é proporcional à magnitude da energia da partícula. Como os fótons são emitidos e absorvidos por partículas, eles actuam como transportadores de energia. A energia de um fóton é calculada pela equação de Planck-Einstein:

.

Nesta equação, E é a energia, h é a constante de Planck, e f é a frequência.

Se um fóton for absorvido por um átomo, ele excita um electrão (português europeu) ou elétron (português brasileiro), elevando-o a um alto nível de energia. Se o nível de energia é suficiente, ele pula para outro nível maior de energia, podendo escapar da atração do núcleo e ser liberado em um processo conhecido como fotoionização. Um elétron que descer ao nível de energia menor emite um fóton de luz igual a diferença de energia. Como os níveis de energia em um átomo são discretos, cada elemento tem suas próprias características de emissão e absorção.[carece de fontes]

Espectro eletromagnético

Espectro eletromagnético com o espectro de luz visível indicado

O espectro eletromagnético é classificado normalmente pelo comprimento da onda, como as ondas de rádio, as micro-ondas, a radiação infravermelha, a luz visível, os raios ultravioleta, os raios X, até a radiação gama.

O comportamento da onda eletromagnética depende do seu comprimento de onda. Ondas com frequências altas possuem comprimento de onda curto e, por outro lado, ondas com frequências baixas possuem comprimento de onda longo . Quando uma onda interage com uma única partícula ou molécula, seu comportamento depende da quantidade de fótons por ela carregada.[carece de fontes] Através da técnica denominada Espectroscopia óptica, é possível obter-se informações sobre uma faixa visível mais larga do que a visão normal. Um espectroscópio comum pode detectar comprimentos de onda de 2 nm a 2 500 nm.

Essas informações detalhadas podem informar propriedades físicas dos objetos, gases e até mesmo estrelas. Por exemplo, um átomo de hidrogênio emite ondas em comprimentos de 21,12 cm. A luz propriamente dita corresponde à faixa que é detectada pelo olho humano, entre 400 nm a 700 nm (um nanômetro vale 1,0×10−9 metro). As ondas de rádio são formadas de uma combinação de amplitude, frequência e fase da onda com a banda da frequência.

Interação da radiação com a matéria

Efeitos biológicos

O efeito biológico mais óbvio das ondas eletromagnéticas se dá em nossos olhos: a luz visível impressiona as células do fundo da retina, causando a sensação visual. Porém, existem outros efeitos mais sutis.

Sabe-se que, em determinadas frequências, as ondas eletromagnéticas podem interagir com moléculas presentes em organismos vivos, por ressonância, isto é, as moléculas cujas frequências fundamentais sejam iguais à da onda em questão "captam" essa oscilação, como uma antena de TV. O efeito sobre a molécula depende da intensidade (amplitude) da onda, podendo ir do simples aquecimento à modificação da estrutura molecular.[carece de fontes] O exemplo mais fácil de ser observado no dia a dia é o de um forno de micro-ondas: as micro-ondas do aparelho, capazes de aquecer a água presente nos alimentos, têm exatamente o mesmo efeito sobre um tecido vivo. Os efeitos da exposição de um animal a uma fonte potente de micro-ondas podem ser catastróficos. Por isso se exige o isolamento físico de equipamentos de telecomunicações que trabalham na faixa de micro-ondas, como as estações rádio-base de telefonia celular.

Assim como as micro-ondas afetam a água, ondas em outra frequência de ressonância podem afetar uma infinidade de outras moléculas. Já foi sugerido que a proximidade a linhas de transmissão teria relações com casos de câncer em crianças, por via de supostas alterações no DNA, provocadas pela prolongada exposição ao campo eletromagnético gerado pelos condutores. Também já se especulou que o uso excessivo do telefone celular teria relação com casos de câncer no cérebro, pelo mesmo motivo. Até hoje, nada disso foi provado.[carece de fontes]

Também já foram feitas experiências para analisar o efeito de campos magnéticos sobre o crescimento de plantas, sem nenhum resultado conclusivo.

Radiação de corpo negro

Ver artigo principal: Radiação de corpo negro

radiação de corpo negro, também conhecida por radiação térmica, é a radiação eletromagnética emitida por um corpo em qualquer temperatura,[5] constituindo uma forma de transmissão de calor, ou seja, por meio deste tipo de radiação ocorre transferência de energia térmica na forma de ondas eletromagnéticas. Quando a matéria emite e absorve perfeitamente qualquer comprimento de onda e está em equilíbrio termodinâmico, considera-se que é um corpo negro, e sua radiação é chamada de radiação de corpo negro.[6]

energia cinética de átomos e moléculas varia, converte-se em energia térmica e resulta na radiação eletromagnética térmica. Como as ondas eletromagnéticas também podem se propagar no vácuo, a transferência de calor de um corpo a outro ocorre mesmo se não existir meio material entre os dois, como é o caso da energia emitida pelo Sol e que chega à Terra.

Leis de Wien e de Planck: à medida que a temperatura diminui, o pico da curva da radiação de um corpo negro se desloca para menores intensidades e maiores comprimentos de onda.

Lei de Wien relaciona o comprimento de onda em que há máxima emissão de radiação de corpo negro com uma temperatura e determina que o comprimento de onda emitido diminui com o aumento da temperatura. A Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro e fornece a distribuição dos comprimentos de onda no espectro em função da temperatura. A maior parte da irradiação ocorre em um comprimento de onda específico, chamado de comprimento de onda principal de irradiação, que depende da temperatura do corpo. Quanto maior a temperatura, maior a frequência da radiação e menor o comprimento de onda.

Comentários

Postagens mais visitadas deste blog